llm
AsyncLM
Bases: ABC
Abstract base class for asynchronous language models.
This class provides an interface for language models that can generate token probabilities asynchronously. It handles tokenization and vocabulary management.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
A Hugging Face tokenizer instance compatible with the language model |
required |
Source code in genlm_backend/llm/base.py
batch_next_token_logprobs(token_ids_list)
async
Batch request log probabilities for multiple token sequences asynchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of log probability tensors. |
Source code in genlm_backend/llm/base.py
batch_next_token_logprobs_sync(token_ids_list)
Batch request log probabilities for multiple token sequences synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of log probability tensors. |
Source code in genlm_backend/llm/base.py
clear_cache()
next_token_logprobs(token_ids)
abstractmethod
async
Request log probabilities of next token asynchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
A list of token IDs representing the prompt. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm_backend/llm/base.py
next_token_logprobs_sync(token_ids)
abstractmethod
Request log probabilities of next token synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
A list of token IDs representing the prompt. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm_backend/llm/base.py
AsyncTransformer
Bases: AsyncLM
Asynchronous wrapper around a HuggingFace causal language model with caching support.
This class provides an asynchronous interface to HuggingFace language models with automatic batching and caching (output and KV) for improved efficiency.
Source code in genlm_backend/llm/hf.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
|
__init__(hf_model, hf_tokenizer, batch_size=20, timeout=0.02)
Initialize an AsyncTransformer instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hf_model
|
A HuggingFace CausalLM model instance. |
required | |
hf_tokenizer
|
A HuggingFace Tokenizer. |
required | |
batch_size
|
int
|
Maximum queries to process in one batch during auto-batching. Defaults to 20. |
20
|
timeout
|
float
|
Seconds to wait since last query before processing current batch. Defaults to 0.02. |
0.02
|
Source code in genlm_backend/llm/hf.py
add_query(query, future, past)
Add a query to be evaluated in the next batch.
This method is called internally when a next_token_logprobs
request is made.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
list[int]
|
Token IDs representing the query prompt |
required |
future
|
Future
|
Future to store the result in |
required |
past
|
list[tuple[Tensor]] | None
|
Past key/value states from previous evaluation, or None if this is a new query |
required |
Source code in genlm_backend/llm/hf.py
batch_evaluate_queries()
Process a batch of queued language model queries.
This method is called internally when the batch_size
has been met or the timeout
has expired.
Source code in genlm_backend/llm/hf.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
cache_kv(prompt_tokens)
Cache the key and value vectors for a prompt. Future queries that have this prompt as a prefix will only run the LLM on new tokens.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_tokens
|
list[int]
|
token ids for the prompt to cache. |
required |
Source code in genlm_backend/llm/hf.py
clear_cache()
clear_kv_cache()
from_name(model_id, bitsandbytes_opts=None, hf_opts=None, **kwargs)
classmethod
Create an AsyncTransformer instance from a pretrained HuggingFace model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
Model identifier in HuggingFace's model hub. |
required |
bitsandbytes_opts
|
dict
|
Additional configuration options for bitsandbytes quantization. Defaults to None. |
None
|
hf_opts
|
dict
|
Additional configuration options for loading the HuggingFace model. Defaults to None. |
None
|
**kwargs
|
Additional arguments passed to the |
{}
|
Returns:
Type | Description |
---|---|
AsyncTransformer
|
An initialized |
Source code in genlm_backend/llm/hf.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token. This version is asynchronous because it automatically batches concurrent requests; use with await
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor of with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm_backend/llm/hf.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token. Not asynchronous, and does not support auto-batching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm_backend/llm/hf.py
next_token_logprobs_uncached(token_ids)
Request log probabilities of next token. No KV or output caching, and does not support auto-batching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
a list of token ids, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
logprobs |
Tensor
|
a tensor with the language model's log (normalized) probabilities for the next token following the prompt. |
Source code in genlm_backend/llm/hf.py
reset_async_queries()
Clear any pending language model queries from the queue. Use this method when an exception prevented an inference algorithm from executing to completion.
walk_cache(token_ids)
Walk the cache tree to find the deepest node matching a sequence of tokens.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
Sequence of token IDs to follow in the cache tree |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in genlm_backend/llm/hf.py
AsyncVirtualLM
Bases: AsyncLM
A wrapper around vLLM's AsyncLLMEngine
for asynchronous next token log probability computations.
This class provides an asynchronous interface for computing log probabilities using vLLM's engine. It is optimized for next token log probability computations and supports caching of results (outputs and KV).
Source code in genlm_backend/llm/vllm.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
__del__()
__init__(async_llm_engine, cache_size=0, cache_opts={})
Initialize an AsyncVirtualLM
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
async_llm_engine
|
AsyncLLMEngine
|
The async vLLM engine instance. |
required |
cache_size
|
int
|
Maximum size of the output cache. If 0, caching is disabled. Defaults to 0. |
0
|
cache_opts
|
dict
|
Additional options to pass to the |
{}
|
Note
The cache stores the log probabilities for previously seen token sequences to avoid redundant requests. KV caching is handled internally by the vLLM engine.
Source code in genlm_backend/llm/vllm.py
batch_next_token_logprobs_sync(token_ids_list)
Request log probabilities of next tokens in a batch synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists, each representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of normalized log probability tensors, one for each prompt in the input list. |
Source code in genlm_backend/llm/vllm.py
clear_cache()
from_name(model_name, engine_opts=None, **kwargs)
classmethod
Create a AsyncVirtualLM
instance from a model name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model to load. |
required |
engine_opts
|
dict
|
Additional options to pass to the |
None
|
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
AsyncVirtualLM
|
An |
Source code in genlm_backend/llm/vllm.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token asynchronously with output caching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
Tensor
|
Normalized log probability tensor. |
Warning
Do not use asyncio.run(next_token_logprobs())
as it may interfere with vLLM's background loop.
For synchronous usage, use the next_token_logprobs_sync()
method instead.
Source code in genlm_backend/llm/vllm.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm_backend/llm/vllm.py
MockAsyncLM
Bases: AsyncLM
Mock implementation of AsyncLM used for testing.
Source code in genlm_backend/llm/base.py
__init__(tokenizer)
Initialize a MockAsyncLM
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
Hugging Face tokenizer instance |
required |
from_name(model_name, **kwargs)
classmethod
Create a MockAsyncLM instance over the vocabulary of the model's tokenizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of pretrained model to load tokenizer from |
required |
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
MockAsyncLM
|
|
Source code in genlm_backend/llm/base.py
next_token_logprobs(token_ids)
async
Get next token log probabilities asynchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
Input token IDs. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm_backend/llm/base.py
next_token_logprobs_sync(token_ids)
Get next token log probabilities synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids
|
list[int]
|
Input token IDs. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |