vllm
AsyncVirtualLM
Bases: AsyncLM
A wrapper around vLLM's AsyncLLMEngine
for asynchronous next token log probability computations.
This class provides an asynchronous interface for computing log probabilities using vLLM's engine. It is optimized for next token log probability computations and supports caching of results (outputs and KV).
Source code in genlm_backend/llm/vllm.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
__del__()
__init__(async_llm_engine, cache_size=0, cache_opts={})
Initialize an AsyncVirtualLM
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
async_llm_engine
|
AsyncLLMEngine
|
The async vLLM engine instance. |
required |
cache_size
|
int
|
Maximum size of the output cache. If 0, caching is disabled. Defaults to 0. |
0
|
cache_opts
|
dict
|
Additional options to pass to the |
{}
|
Note
The cache stores the log probabilities for previously seen token sequences to avoid redundant requests. KV caching is handled internally by the vLLM engine.
Source code in genlm_backend/llm/vllm.py
batch_next_token_logprobs_sync(token_ids_list)
Request log probabilities of next tokens in a batch synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[list[int]]
|
A list of token ID lists, each representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of normalized log probability tensors, one for each prompt in the input list. |
Source code in genlm_backend/llm/vllm.py
clear_cache()
from_name(model_name, engine_opts=None, **kwargs)
classmethod
Create a AsyncVirtualLM
instance from a model name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model to load. |
required |
engine_opts
|
dict
|
Additional options to pass to the |
None
|
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
AsyncVirtualLM
|
An |
Source code in genlm_backend/llm/vllm.py
next_token_logprobs(token_ids)
async
Request log probabilities of next token asynchronously with output caching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
Tensor
|
Normalized log probability tensor. |
Warning
Do not use asyncio.run(next_token_logprobs())
as it may interfere with vLLM's background loop.
For synchronous usage, use the next_token_logprobs_sync()
method instead.
Source code in genlm_backend/llm/vllm.py
next_token_logprobs_sync(token_ids)
Request log probabilities of next token synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token_ids_list
|
list[int]
|
A list of token IDs, representing a prompt to the language model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized log probability tensor. |
Source code in genlm_backend/llm/vllm.py
DeferredSampler
Bases: Module
A custom vLLM sampler optimized for efficient next-token probability calculations.
This sampler replaces vLLM's default sampling mechanism to optimize for scenarios where we only need the next token probabilities without actually sampling tokens.
Note
While this sampler implements vLLM's expected interface, it intentionally avoids actual token sampling to optimize for probability calculation use cases. It should not be used in scenarios where actual token generation is needed.
Source code in genlm_backend/llm/vllm.py
forward(logits, sampling_metadata)
Process model logits to create vLLM-compatible sampling outputs.
This method implements the required vLLM sampler interface but optimizes for probability requests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits
|
Tensor
|
Raw model logits with shape (num_tokens, vocab_size). |
required |
sampling_metadata
|
vLLM metadata containing sequence grouping information. |
required |
Returns:
Name | Type | Description |
---|---|---|
SamplerOutput |
A vLLM-compatible output structure containing: - Sequence group outputs with lazy probability dictionaries - Placeholder values for unused sampling fields - No actual sampled tokens (uses dummy token_id=0) |
Note
The sampler uses token_id=0 as a placeholder.
Source code in genlm_backend/llm/vllm.py
LazyLogprobDict
An efficient dictionary-like interface required by vLLM's output processing.
vLLM's output processor expects token probabilities to be provided as a dictionary mapping token IDs to Logprob objects. However, creating this full dictionary is computationally expensive, especially when dealing with large vocabulary sizes (often 50k+ tokens).
This class provides a compatible interface that satisfies vLLM's requirements while avoiding the overhead.